(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
top(free(x)) → top(check(new(x)))
new(free(x)) → free(new(x))
old(free(x)) → free(old(x))
new(serve) → free(serve)
old(serve) → free(serve)
check(free(x)) → free(check(x))
check(new(x)) → new(check(x))
check(old(x)) → old(check(x))
check(old(x)) → old(x)
Rewrite Strategy: INNERMOST
(1) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(2) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
top(free(x)) → top(check(new(x)))
new(free(x)) → free(new(x))
old(free(x)) → free(old(x))
new(serve) → free(serve)
old(serve) → free(serve)
check(free(x)) → free(check(x))
check(new(x)) → new(check(x))
check(old(x)) → old(check(x))
check(old(x)) → old(x)
S is empty.
Rewrite Strategy: INNERMOST
(3) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(4) Obligation:
Innermost TRS:
Rules:
top(free(x)) → top(check(new(x)))
new(free(x)) → free(new(x))
old(free(x)) → free(old(x))
new(serve) → free(serve)
old(serve) → free(serve)
check(free(x)) → free(check(x))
check(new(x)) → new(check(x))
check(old(x)) → old(check(x))
check(old(x)) → old(x)
Types:
top :: free:serve → top
free :: free:serve → free:serve
check :: free:serve → free:serve
new :: free:serve → free:serve
old :: free:serve → free:serve
serve :: free:serve
hole_top1_0 :: top
hole_free:serve2_0 :: free:serve
gen_free:serve3_0 :: Nat → free:serve
(5) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
top,
check,
new,
oldThey will be analysed ascendingly in the following order:
check < top
new < top
new < check
old < check
(6) Obligation:
Innermost TRS:
Rules:
top(
free(
x)) →
top(
check(
new(
x)))
new(
free(
x)) →
free(
new(
x))
old(
free(
x)) →
free(
old(
x))
new(
serve) →
free(
serve)
old(
serve) →
free(
serve)
check(
free(
x)) →
free(
check(
x))
check(
new(
x)) →
new(
check(
x))
check(
old(
x)) →
old(
check(
x))
check(
old(
x)) →
old(
x)
Types:
top :: free:serve → top
free :: free:serve → free:serve
check :: free:serve → free:serve
new :: free:serve → free:serve
old :: free:serve → free:serve
serve :: free:serve
hole_top1_0 :: top
hole_free:serve2_0 :: free:serve
gen_free:serve3_0 :: Nat → free:serve
Generator Equations:
gen_free:serve3_0(0) ⇔ serve
gen_free:serve3_0(+(x, 1)) ⇔ free(gen_free:serve3_0(x))
The following defined symbols remain to be analysed:
new, top, check, old
They will be analysed ascendingly in the following order:
check < top
new < top
new < check
old < check
(7) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
new(
gen_free:serve3_0(
n5_0)) →
gen_free:serve3_0(
+(
1,
n5_0)), rt ∈ Ω(1 + n5
0)
Induction Base:
new(gen_free:serve3_0(0)) →RΩ(1)
free(serve)
Induction Step:
new(gen_free:serve3_0(+(n5_0, 1))) →RΩ(1)
free(new(gen_free:serve3_0(n5_0))) →IH
free(gen_free:serve3_0(+(1, c6_0)))
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(8) Complex Obligation (BEST)
(9) Obligation:
Innermost TRS:
Rules:
top(
free(
x)) →
top(
check(
new(
x)))
new(
free(
x)) →
free(
new(
x))
old(
free(
x)) →
free(
old(
x))
new(
serve) →
free(
serve)
old(
serve) →
free(
serve)
check(
free(
x)) →
free(
check(
x))
check(
new(
x)) →
new(
check(
x))
check(
old(
x)) →
old(
check(
x))
check(
old(
x)) →
old(
x)
Types:
top :: free:serve → top
free :: free:serve → free:serve
check :: free:serve → free:serve
new :: free:serve → free:serve
old :: free:serve → free:serve
serve :: free:serve
hole_top1_0 :: top
hole_free:serve2_0 :: free:serve
gen_free:serve3_0 :: Nat → free:serve
Lemmas:
new(gen_free:serve3_0(n5_0)) → gen_free:serve3_0(+(1, n5_0)), rt ∈ Ω(1 + n50)
Generator Equations:
gen_free:serve3_0(0) ⇔ serve
gen_free:serve3_0(+(x, 1)) ⇔ free(gen_free:serve3_0(x))
The following defined symbols remain to be analysed:
old, top, check
They will be analysed ascendingly in the following order:
check < top
old < check
(10) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
old(
gen_free:serve3_0(
n226_0)) →
gen_free:serve3_0(
+(
1,
n226_0)), rt ∈ Ω(1 + n226
0)
Induction Base:
old(gen_free:serve3_0(0)) →RΩ(1)
free(serve)
Induction Step:
old(gen_free:serve3_0(+(n226_0, 1))) →RΩ(1)
free(old(gen_free:serve3_0(n226_0))) →IH
free(gen_free:serve3_0(+(1, c227_0)))
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(11) Complex Obligation (BEST)
(12) Obligation:
Innermost TRS:
Rules:
top(
free(
x)) →
top(
check(
new(
x)))
new(
free(
x)) →
free(
new(
x))
old(
free(
x)) →
free(
old(
x))
new(
serve) →
free(
serve)
old(
serve) →
free(
serve)
check(
free(
x)) →
free(
check(
x))
check(
new(
x)) →
new(
check(
x))
check(
old(
x)) →
old(
check(
x))
check(
old(
x)) →
old(
x)
Types:
top :: free:serve → top
free :: free:serve → free:serve
check :: free:serve → free:serve
new :: free:serve → free:serve
old :: free:serve → free:serve
serve :: free:serve
hole_top1_0 :: top
hole_free:serve2_0 :: free:serve
gen_free:serve3_0 :: Nat → free:serve
Lemmas:
new(gen_free:serve3_0(n5_0)) → gen_free:serve3_0(+(1, n5_0)), rt ∈ Ω(1 + n50)
old(gen_free:serve3_0(n226_0)) → gen_free:serve3_0(+(1, n226_0)), rt ∈ Ω(1 + n2260)
Generator Equations:
gen_free:serve3_0(0) ⇔ serve
gen_free:serve3_0(+(x, 1)) ⇔ free(gen_free:serve3_0(x))
The following defined symbols remain to be analysed:
check, top
They will be analysed ascendingly in the following order:
check < top
(13) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
check(
gen_free:serve3_0(
+(
1,
n451_0))) →
*4_0, rt ∈ Ω(n451
0)
Induction Base:
check(gen_free:serve3_0(+(1, 0)))
Induction Step:
check(gen_free:serve3_0(+(1, +(n451_0, 1)))) →RΩ(1)
free(check(gen_free:serve3_0(+(1, n451_0)))) →IH
free(*4_0)
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(14) Complex Obligation (BEST)
(15) Obligation:
Innermost TRS:
Rules:
top(
free(
x)) →
top(
check(
new(
x)))
new(
free(
x)) →
free(
new(
x))
old(
free(
x)) →
free(
old(
x))
new(
serve) →
free(
serve)
old(
serve) →
free(
serve)
check(
free(
x)) →
free(
check(
x))
check(
new(
x)) →
new(
check(
x))
check(
old(
x)) →
old(
check(
x))
check(
old(
x)) →
old(
x)
Types:
top :: free:serve → top
free :: free:serve → free:serve
check :: free:serve → free:serve
new :: free:serve → free:serve
old :: free:serve → free:serve
serve :: free:serve
hole_top1_0 :: top
hole_free:serve2_0 :: free:serve
gen_free:serve3_0 :: Nat → free:serve
Lemmas:
new(gen_free:serve3_0(n5_0)) → gen_free:serve3_0(+(1, n5_0)), rt ∈ Ω(1 + n50)
old(gen_free:serve3_0(n226_0)) → gen_free:serve3_0(+(1, n226_0)), rt ∈ Ω(1 + n2260)
check(gen_free:serve3_0(+(1, n451_0))) → *4_0, rt ∈ Ω(n4510)
Generator Equations:
gen_free:serve3_0(0) ⇔ serve
gen_free:serve3_0(+(x, 1)) ⇔ free(gen_free:serve3_0(x))
The following defined symbols remain to be analysed:
top
(16) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol top.
(17) Obligation:
Innermost TRS:
Rules:
top(
free(
x)) →
top(
check(
new(
x)))
new(
free(
x)) →
free(
new(
x))
old(
free(
x)) →
free(
old(
x))
new(
serve) →
free(
serve)
old(
serve) →
free(
serve)
check(
free(
x)) →
free(
check(
x))
check(
new(
x)) →
new(
check(
x))
check(
old(
x)) →
old(
check(
x))
check(
old(
x)) →
old(
x)
Types:
top :: free:serve → top
free :: free:serve → free:serve
check :: free:serve → free:serve
new :: free:serve → free:serve
old :: free:serve → free:serve
serve :: free:serve
hole_top1_0 :: top
hole_free:serve2_0 :: free:serve
gen_free:serve3_0 :: Nat → free:serve
Lemmas:
new(gen_free:serve3_0(n5_0)) → gen_free:serve3_0(+(1, n5_0)), rt ∈ Ω(1 + n50)
old(gen_free:serve3_0(n226_0)) → gen_free:serve3_0(+(1, n226_0)), rt ∈ Ω(1 + n2260)
check(gen_free:serve3_0(+(1, n451_0))) → *4_0, rt ∈ Ω(n4510)
Generator Equations:
gen_free:serve3_0(0) ⇔ serve
gen_free:serve3_0(+(x, 1)) ⇔ free(gen_free:serve3_0(x))
No more defined symbols left to analyse.
(18) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
new(gen_free:serve3_0(n5_0)) → gen_free:serve3_0(+(1, n5_0)), rt ∈ Ω(1 + n50)
(19) BOUNDS(n^1, INF)
(20) Obligation:
Innermost TRS:
Rules:
top(
free(
x)) →
top(
check(
new(
x)))
new(
free(
x)) →
free(
new(
x))
old(
free(
x)) →
free(
old(
x))
new(
serve) →
free(
serve)
old(
serve) →
free(
serve)
check(
free(
x)) →
free(
check(
x))
check(
new(
x)) →
new(
check(
x))
check(
old(
x)) →
old(
check(
x))
check(
old(
x)) →
old(
x)
Types:
top :: free:serve → top
free :: free:serve → free:serve
check :: free:serve → free:serve
new :: free:serve → free:serve
old :: free:serve → free:serve
serve :: free:serve
hole_top1_0 :: top
hole_free:serve2_0 :: free:serve
gen_free:serve3_0 :: Nat → free:serve
Lemmas:
new(gen_free:serve3_0(n5_0)) → gen_free:serve3_0(+(1, n5_0)), rt ∈ Ω(1 + n50)
old(gen_free:serve3_0(n226_0)) → gen_free:serve3_0(+(1, n226_0)), rt ∈ Ω(1 + n2260)
check(gen_free:serve3_0(+(1, n451_0))) → *4_0, rt ∈ Ω(n4510)
Generator Equations:
gen_free:serve3_0(0) ⇔ serve
gen_free:serve3_0(+(x, 1)) ⇔ free(gen_free:serve3_0(x))
No more defined symbols left to analyse.
(21) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
new(gen_free:serve3_0(n5_0)) → gen_free:serve3_0(+(1, n5_0)), rt ∈ Ω(1 + n50)
(22) BOUNDS(n^1, INF)
(23) Obligation:
Innermost TRS:
Rules:
top(
free(
x)) →
top(
check(
new(
x)))
new(
free(
x)) →
free(
new(
x))
old(
free(
x)) →
free(
old(
x))
new(
serve) →
free(
serve)
old(
serve) →
free(
serve)
check(
free(
x)) →
free(
check(
x))
check(
new(
x)) →
new(
check(
x))
check(
old(
x)) →
old(
check(
x))
check(
old(
x)) →
old(
x)
Types:
top :: free:serve → top
free :: free:serve → free:serve
check :: free:serve → free:serve
new :: free:serve → free:serve
old :: free:serve → free:serve
serve :: free:serve
hole_top1_0 :: top
hole_free:serve2_0 :: free:serve
gen_free:serve3_0 :: Nat → free:serve
Lemmas:
new(gen_free:serve3_0(n5_0)) → gen_free:serve3_0(+(1, n5_0)), rt ∈ Ω(1 + n50)
old(gen_free:serve3_0(n226_0)) → gen_free:serve3_0(+(1, n226_0)), rt ∈ Ω(1 + n2260)
Generator Equations:
gen_free:serve3_0(0) ⇔ serve
gen_free:serve3_0(+(x, 1)) ⇔ free(gen_free:serve3_0(x))
No more defined symbols left to analyse.
(24) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
new(gen_free:serve3_0(n5_0)) → gen_free:serve3_0(+(1, n5_0)), rt ∈ Ω(1 + n50)
(25) BOUNDS(n^1, INF)
(26) Obligation:
Innermost TRS:
Rules:
top(
free(
x)) →
top(
check(
new(
x)))
new(
free(
x)) →
free(
new(
x))
old(
free(
x)) →
free(
old(
x))
new(
serve) →
free(
serve)
old(
serve) →
free(
serve)
check(
free(
x)) →
free(
check(
x))
check(
new(
x)) →
new(
check(
x))
check(
old(
x)) →
old(
check(
x))
check(
old(
x)) →
old(
x)
Types:
top :: free:serve → top
free :: free:serve → free:serve
check :: free:serve → free:serve
new :: free:serve → free:serve
old :: free:serve → free:serve
serve :: free:serve
hole_top1_0 :: top
hole_free:serve2_0 :: free:serve
gen_free:serve3_0 :: Nat → free:serve
Lemmas:
new(gen_free:serve3_0(n5_0)) → gen_free:serve3_0(+(1, n5_0)), rt ∈ Ω(1 + n50)
Generator Equations:
gen_free:serve3_0(0) ⇔ serve
gen_free:serve3_0(+(x, 1)) ⇔ free(gen_free:serve3_0(x))
No more defined symbols left to analyse.
(27) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
new(gen_free:serve3_0(n5_0)) → gen_free:serve3_0(+(1, n5_0)), rt ∈ Ω(1 + n50)
(28) BOUNDS(n^1, INF)